Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: habituales
Desarrollos en serie de Maclaurin de las funciones habituales
En los siguientes ejercicios, deducimos los desarrollos en serie de Maclaurin de las funciones habituales. Enunciado Demostrar que $$e^x=1+\dfrac{x}{1!}+\dfrac{x^2}{2!}+\cdots +\dfrac{x^n}{n!}+\cdots =\displaystyle\sum_{k=0}^{+\infty}\dfrac{x^k}{k!}\quad\left(\forall x\in\mathbb{R}\right).$$ y que si $a>0,$ $$a^x=1+\dfrac{x\log a}{1!}+\dfrac{x^2\left(\log a\right)^2}{2!}+\cdots +\dfrac{x^n\left(\log a\right)^n}{n!}+\cdots =\displaystyle\sum_{k=0}^{+\infty}\dfrac{x^k\left(\log a\right)^k}{k!}$$ para todo $x\in\mathbb{R}.$ Demostrar que $$\operatorname{ch}{x}=1+\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+\cdots +\dfrac{x^{2n}}{(2n)!}+\cdots=\displaystyle\sum_{k=0}^{+\infty}\dfrac{x^{2k}}{(2k)!}\quad\left(\forall … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado desarrollos, funciones, habituales, Maclaurin, serie
Comentarios desactivados en Desarrollos en serie de Maclaurin de las funciones habituales