Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: Hilbert
Proyecciones ortogonales en espacios de Hilbert
RESUMEN. Definimos las proyecciones ortogonales sobre todo subespacio cerrado y su ortogonal en espacios de Hilbert. Enunciado Sea $H$ un espacio de Hilbert. Demostrar que: (1) Si $F$ es un subespacio de $H$, entonces $F\cap F^\perp=\{0\}.$ (2) Si $x\in H$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado Hilbert, ortogonales, proyecciones
Comentarios desactivados en Proyecciones ortogonales en espacios de Hilbert
Vector de norma mínima en un subconjunto de un espacio de Hilbert
RESUMEN. Demostramos que en todo subconjunto no vacío convexo y cerrado de un espacio de Hilbert existe un vector de norma mínima. Enunciado Sea $A$ un subconjunto no vacío convexo y cerrado de un espacio de Hilbert $H$. Demostrar que … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado Hilbert, mínima, norma
Comentarios desactivados en Vector de norma mínima en un subconjunto de un espacio de Hilbert
El espacio $l^2$ es de Hilbert
RESUMEN. Demostramos que el espacio $l^2$ es de Hilbert. Enunciado Designamos por $\mathbb{K}$ al cuerpo de los números reales o complejos indistintamente. Se define el subconjunto de $\mathbb{K}^{\mathbb{N}}$: $$l_2:=\{x=(x_k)\in\mathbb{K}^{\mathbb{N}}: \sum_{k=1}^{+\infty} |x_k|^2< +\infty\}.$$ (a) Demostrar que $l^2$ es espacio vectorial con … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $l^2$, espacio, Hilbert
Comentarios desactivados en El espacio $l^2$ es de Hilbert
Espacio prehilbertiano de las funciones continuas
RESUMEN. Demostramos el espacio de las funciones complejas en un intervalo cerrado es prehilbertiano pero no de Hilbert. Enunciado (a) Sea $P$ el espacio vectorial complejo de las funciones complejas continuas definidas en el intervalo cerrado real $[a,b].$ Es decir, … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado continuas, funciones, Hilbert
Comentarios desactivados en Espacio prehilbertiano de las funciones continuas
Teorema de la base de Hilbert
Demostramos el teorema de la base de Hilbert y como corolario, que para todo cuerpo $k$, el anillo de polinomios $k[x_1,\ldots,x_n]$ es noetheriano. Teorema (de la base de Hilbert). Sea $A$ anillo conmutativo y unitario. Entonces, $$A\text{ es noetheriano}\Rightarrow A[x]\text{ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado base, Hilbert, noetheriano, teorema
Comentarios desactivados en Teorema de la base de Hilbert