Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: holomorfas
Funciones holomorfas $\;f: \text{Re} (f) + \text{Im} (f) =1$
Enunciado Encontrar todas las funciones holomorfas $f(z),\;z\in \mathbb{C}$ que satisfacen la condición $a\;\mbox{Re }f(z)+b\;\mbox{Im }f(z)=1$ siendo $a,b$ constantes reales no simultáneamente nulas. (Propuesto en examen, Amp. Calc., ETS de Ing. Industriales, UPM). Solución Denotando $f=u+iv$ en donde $u=\mbox{Re }f,\;v=\mbox{Im }f,$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado funciones, holomorfas, Re (f) + Im (f) =1
Comentarios desactivados en Funciones holomorfas $\;f: \text{Re} (f) + \text{Im} (f) =1$