Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: homogéneos
Sistemas diferenciales lineales no homogéneos con coeficientes constantes
Resolvemos dos sistemas diferenciales lineales no homogéneos con coeficientes constantes. Enunciado Resolver el sistema diferencial: $$X’=\begin{bmatrix}{\;\;4}&{1}\\{-2}&{1}\end{bmatrix}X+\begin{bmatrix}{0}\\{-2e^{t}}\end{bmatrix},$$ con la condición $X(0)=\begin{bmatrix}{1}\\{0}\end{bmatrix}.$ Resolver el sistema diferencial: $$X’=\begin{bmatrix}{-1}&{0}&{0}\\{\;\;0}&{2}&{1}\\{\;\;0}&{0}&{2}\end{bmatrix}X+\begin{bmatrix}{t}\\{1}\\{0}\end{bmatrix},$$ con la condición $X(0)=\begin{bmatrix}{\;\;0}\\{\;\;1}\\{-1}\end{bmatrix}.$ Solución Recordemos el siguiente teorema: sea el sistema diferencial lineal no … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado coeficientes, constantes, diferenciales, homogéneos, lineales, no, sistemas
Comentarios desactivados en Sistemas diferenciales lineales no homogéneos con coeficientes constantes
Sistemas diferenciales lineales homogéneos con coeficientes constantes
Resolvemos tres sistemas diferenciales lineales homogéneos con coeficientes constantes. Enunciado Resolver los siguientes sistemas diferenciales: $\quad\left \{ \begin{matrix}x’_1=2x_1+x_2+x_3\\x’_2=x_1+2x_2+x_3\\ x’_3=x_1+x_2+2x_3\end{matrix}\right.\quad$ con la condición inicial $\qquad \left \{ \begin{matrix}x_1(1)=1\\x_2(1)=0\\ x_3(1)=3.\end{matrix}\right.$ $\quad \begin{bmatrix}{x’_1}\\{x’_2}\\{x’_3}\end{bmatrix}=\begin{bmatrix}{2}&{6}&{-15}\\{1}&{1}&{-5}\\{1}&{2}&{-6}\end{bmatrix}\begin{bmatrix}{x_1}\\{x_2}\\{x_3}\end{bmatrix}.$ $\quad \begin{bmatrix}{x’}\\{y’}\end{bmatrix}=\begin{bmatrix}{3}&{-1}\\{13}&{-3}\end{bmatrix}\begin{bmatrix}{x}\\{y}\end{bmatrix}\quad$ con la condición inicial $\begin{bmatrix}{x(0)}\\{y(0)}\end{bmatrix}=\begin{bmatrix}{2}\\{2}\end{bmatrix}.$ Solución Recordemos el … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado coeficientes, constantes, diferenciales, homogéneos, lineales, sistemas
Comentarios desactivados en Sistemas diferenciales lineales homogéneos con coeficientes constantes