Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: ideal
Ideal generado por un subconjunto de un anillo
Construimos el ideal generado por un subconjunto de un anillo y demostramos que es el menor ideal de entre los que lo contienen. Enunciado Sea $R$ un anillo conmutativo y unitario y $S$ un subconjunto de $R.$ Se define $$\langle … Sigue leyendo
Publicado en Álgebra
Etiquetado anillo, generado, ideal, subconjunto
Comentarios desactivados en Ideal generado por un subconjunto de un anillo
Ideal maximal en el anillo de las funciones de clase infinito
Demostramos que el ideal de las funciones que se anulan en 0 es ideal maximal del anillo de las funciones de clase infinito. Enunciado Sea $A=\mathcal{C}^{\infty}(\mathbb{R})$ el conjunto de las funciones de clase infinito de $\mathbb{R}$ en $\mathbb{R}.$ Demostrar que … Sigue leyendo
Ideal bilátero f(I)
Demostramos que la imagen de un ideal bilátero por un homomorfismo de anillos es ideal bilátero del anillo imagen. Enunciado Siendo $f:A\to A’$ un homomorfismo de anillos e $I$ un ideal bilátero de $A$, demostrar que $f(I)$ es un ideal … Sigue leyendo
Ideal de las sucesiones nulas
Demostramos que las sucesiones nulas son un ideal del anillo de las sucesiones acotadas. Enunciado Demostrar que el conjunto $\mathcal{N}$ de las sucesiones reales nulas, es decir de límite $0,$ es un ideal del anillo $\mathcal{B}$ de las sucesiones acotadas … Sigue leyendo
Publicado en Álgebra
Etiquetado ideal, nulas, sucesiones
Comentarios desactivados en Ideal de las sucesiones nulas