Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: Igualdad
Igualdad de matrices a partir de una de determinantes
Demostramos una igualdad de matrices a partir de una de determinantes. Enunciado Sea $\mathbb{K}$ un cuerpo, $\mathbb{K}^{n\times n}$ el conjunto de las matrices cuadradas de orden $n$ con entradas en $\mathbb{K}$ y $A,B\in \mathbb{K}^{n\times n}$ fijas. Demostrar que $$\det (A+X)=\det … Sigue leyendo
Publicado en Álgebra
Etiquetado determinantes, Igualdad, matrices
Comentarios desactivados en Igualdad de matrices a partir de una de determinantes
Igualdad integral $\int_{\pi}^{+\infty}\frac{\sin t}{t\log^2 t}dt=\int_{\pi}^{+\infty}\frac{\cos t}{\log t}dt$
Enunciado Demostrar la igualdad entre las integrales impropias $$I=\displaystyle\int_{\pi}^{+\infty}\displaystyle\frac{\sin t}{t\log^2 t}dt,\quad J=\displaystyle\int_{\pi}^{+\infty}\displaystyle\frac{\cos t}{\log t}dt.$$ Solución En $[\pi,+\infty)$, tenemos $$\left|\displaystyle\frac{\sin t}{t\log^2 t}\right|\leq{\displaystyle\frac{1}{t\log^2 t}}.$$ Efectuando el cambio $x=\log t:$ $$\int_{\pi}^{+\infty}\displaystyle\frac{dt}{t\log^2 t}=\int_{\log \pi}^{+\infty}\displaystyle\frac{dx}{x^2}\text{ (convergente)}$$ por tanto $I$ es absolutamente convergente y como consecuencia, … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $int_{pi}^{+infty}frac{sin t}{tlog^2 t}dt=int_{pi}^{+infty}frac{cos t}{log t}dt$, Igualdad, integral
Comentarios desactivados en Igualdad integral $\int_{\pi}^{+\infty}\frac{\sin t}{t\log^2 t}dt=\int_{\pi}^{+\infty}\frac{\cos t}{\log t}dt$