Archivo de la etiqueta: independencia

Dependencia e independencia lineal de vectores

Proponemos ejercicios sobre dependencia e independencia lineal de vectores. Enunciado En el espacio vectorial usual $\mathbb{R}^2$ analizar si $v_1=(2,-1),\;v_2=(3,2)$ son linealmente independientes. En el espacio vectorial usual $\mathbb{R}^3$ analizar si son linealmente independientes los vectores $v_1=(1,2,-1),\;v_2=(2,-1,-3),\;v_3=(-3,4,5).$ Sean $u,v,w$ vectores linealmente … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Dependencia e independencia lineal de vectores

Independencia funcional

Definimos la independencia funcional y la comparamos con la independencia lineal. Enunciado Demostrar que si $v^1,v^2,\ldots,v^p$ son funcionalmente independientes, también son linealmente independientes. Demostrar que  $$v^1=\begin{bmatrix}{e^{-t}}\\{0}\\{-1}\\{e^{-t}}\end{bmatrix}\;,\quad v^2=\begin{bmatrix}{0}\\{t^2}\\{0}\\{-1}\end{bmatrix}\;,\quad v^3=\begin{bmatrix}{1}\\{t^2}\\{-e^{-t}}\\{0}\end{bmatrix}$$ son linealmente independientes en $[0,1],$ pero funcionalmente dependientes. Solución Sean $\alpha_1,\alpha_2,\ldots,\alpha_p\in\mathbb{K}$ tales … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , | Comentarios desactivados en Independencia funcional