Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: inflexión
Puntos de inflexión que yacen en una curva
Enunciado Demostrar que los puntos de inflexión de la curva de ecuación $y=\dfrac{\sin x}{x}$ yacen en la curva $y^2(x^4 + 4) = 4.$ Solución La derivada segunda de $y$ es $$y^{\prime\prime}=\ldots=-\displaystyle\frac{(x^2-2)\sin x +2x\cos x}{x^3}.$$ Para que exista punto de inflexión … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado curva, inflexión, puntos, yacen
Comentarios desactivados en Puntos de inflexión que yacen en una curva
Puntos de inflexión de una familia de curvas
Enunciado Sea el conjunto de funciones $f_a(x)=\dfrac{x^3+a}{(x+1)^2},$ donde $a\in\mathbb{R}-\{1\}.$ (a) Determinar las funciones de este conjunto cuya representación gráfica admite un punto de inflexión en el cual la tangente es paralela al eje de abscisas. (b) Probar que todas las … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado curvas, familia, inflexión, puntos
Comentarios desactivados en Puntos de inflexión de una familia de curvas