Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: $int_0^{2pi}frac{dtheta}{a+bcos theta+csintheta}$
Integral $\displaystyle\int_0^{2\pi}\frac{d\theta}{a+b\cos \theta+c\sin\theta}$
Enunciado Demostrar que para $a,b,c$ reales positivos con $a^2 > b^2 + c^2$ se verifica $$\int_0^{2\pi}\frac{d\theta}{a+b\cos \theta+c\sin\theta}=\frac{2\pi}{\sqrt{a^2-b^2-c^2}}.$$ Solución Efectuando el cambio $z=e^{i\theta}$ obtenemos $$dz=ie^{i\theta}d\theta=izd\theta,$$ $$\cos \theta=\frac{e^{i\theta}+e^{-i\theta}}{2}=\frac{z+1/z}{2}=\frac{z^2+1}{2z},$$ $$\sin \theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}=\frac{z-1/z}{2i}=\frac{z^2-1}{2iz}.$$ Cuando $\theta$ recorre $[0,2\pi],$ $z$ recorre la circunferencia $\left|z\right|=1$ en sentido antihorario, … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $int_0^{2pi}frac{dtheta}{a+bcos theta+csintheta}$, integral
Comentarios desactivados en Integral $\displaystyle\int_0^{2\pi}\frac{d\theta}{a+b\cos \theta+c\sin\theta}$