Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: $int_{pi}^{+infty}frac{sin t}{tlog^2 t}dt=int_{pi}^{+infty}frac{cos t}{log t}dt$
Igualdad integral $\int_{\pi}^{+\infty}\frac{\sin t}{t\log^2 t}dt=\int_{\pi}^{+\infty}\frac{\cos t}{\log t}dt$
Enunciado Demostrar la igualdad entre las integrales impropias $$I=\displaystyle\int_{\pi}^{+\infty}\displaystyle\frac{\sin t}{t\log^2 t}dt,\quad J=\displaystyle\int_{\pi}^{+\infty}\displaystyle\frac{\cos t}{\log t}dt.$$ Solución En $[\pi,+\infty)$, tenemos $$\left|\displaystyle\frac{\sin t}{t\log^2 t}\right|\leq{\displaystyle\frac{1}{t\log^2 t}}.$$ Efectuando el cambio $x=\log t:$ $$\int_{\pi}^{+\infty}\displaystyle\frac{dt}{t\log^2 t}=\int_{\log \pi}^{+\infty}\displaystyle\frac{dx}{x^2}\text{ (convergente)}$$ por tanto $I$ es absolutamente convergente y como consecuencia, … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $int_{pi}^{+infty}frac{sin t}{tlog^2 t}dt=int_{pi}^{+infty}frac{cos t}{log t}dt$, Igualdad, integral
Comentarios desactivados en Igualdad integral $\int_{\pi}^{+\infty}\frac{\sin t}{t\log^2 t}dt=\int_{\pi}^{+\infty}\frac{\cos t}{\log t}dt$