Archivo de la etiqueta: intervalos

Integrales impropias en intervalos finitos

Proporcionamos ejemplos de cálculo y estudio de la convergencia de integrales impropias en intervalos finitos. Enunciado Calcular $\;(a)\;\displaystyle\int _0^1\frac{dx}{\sqrt{x}}.\quad (b)\;\int _{-1}^2\frac{dx}{x}.$ Calcular $\;I=\displaystyle\int_{0}^{1}\frac{dx}{x^p}$ con $p\in\mathbb{R}.$ Calcular $\displaystyle\int_0^{3}\frac{dx}{(x-1)^2}.$ Calcular $\displaystyle\int_0^{1}\frac{dx}{\sqrt{1-x^2}}.$ Calcular $\displaystyle\int_0^{1/2}\frac{dx}{x\log x}.$ Estudiar la convergencia de la integral $\displaystyle\int_1^{2}\frac{dx}{\log x}.$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , | Comentarios desactivados en Integrales impropias en intervalos finitos

Convergencia absoluta de integrales impropias en intervalos infinitos

Demostramos que la convergencia absoluta de integrales impropias en intervalos infinitos implica la convergencia, y proporcionamos un contraejemplo que demuestra que el recíproco no es cierto. Enunciado Sea $f:[a,+\infty)\to\mathbb{R}$ continua a trozos en todo intervalo $[a,b].$ Demostrar que si $\int_a^{+\infty}f(x)\;dx$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , , | Comentarios desactivados en Convergencia absoluta de integrales impropias en intervalos infinitos