Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: inversas
Imágenes inversas de conjuntos compactos
Analizamos dos casos de compacidad de las imágenes inversas de conjuntos compactos. Enunciado Sean $X$ e $Y$ espacios topológicos y $f:X\to Y$ continua. Demostrar que si $X$ es compacto e $Y$ es de Hausdorff entonces, las imágenes inversas de conjuntos … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado compactos, conjuntos, imágenes, inversas
Comentarios desactivados en Imágenes inversas de conjuntos compactos
Derivación de funciones hiperbólicas inversas
Proporcionamos ejercicios sobre derivación de funciones hiperbólicas inversas. Enunciado Calcular $f'(x),$ siendo $f(x)=\operatorname{arth}x-\arctan x.$ Calcular $y’,$ siendo $y=\dfrac{\operatorname{arch}x}{x}.$ Calcular $\dfrac{d}{dx}\left(\operatorname{arsen}x\;\operatorname{arsh}x\right).$ Solución $\quad f'(x)=\dfrac{1}{1-x^2}-\dfrac{1}{1+x^2}=\dfrac{1+x^2-1+x^2}{(1-x^2)(1+x^2)}=\dfrac{2x^2}{(1-x^2)(1+x^2)}.$ $\quad y’=\dfrac{\dfrac{1}{\sqrt{x^2-1}}x-\operatorname{arch}x}{x^2}=\dfrac{x-\sqrt{x^2-1}\operatorname{arch}x}{x^2\sqrt{x^2-1}}.$ $\quad \dfrac{d}{dx}\left(\operatorname{arsen}x\;\operatorname{arsh}x\right)=\dfrac{1}{\sqrt{1-x^2}}\operatorname{arsh}x+\dfrac{1}{\sqrt{x^2+1}}\operatorname{arsen}x.$
Publicado en Análisis real y complejo
Etiquetado derivación, funciones, hiperbólicas, inversas
Comentarios desactivados en Derivación de funciones hiperbólicas inversas
Derivación de funciones trigonométricas y circulares inversas
Proporcionamos ejercicios sobre derivación de funciones trigonométricas y circulares inversas. Enunciado Hallar $y’$ siendo: $(a)\; y=a\cos x+b\operatorname{sen} x.\quad$ $(b)\; y=\dfrac{\operatorname{sen} x+\cos x}{\operatorname{sen} x-\cos x}.\quad$ $(c)\; y=x\tan x.$ Hallar: $(a)\; \dfrac{d}{dx}(x\operatorname{arcsen} x).\; (b)\;\dfrac{d}{dx}(\cot x-\tan x).\; (c)\;\dfrac{d}{dt}\left((t^2-2)\cos t-2t \operatorname{sen} t\right).$ Demostrar que: … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado circulares, derivación, funciones, inversas, trigonométricas
Comentarios desactivados en Derivación de funciones trigonométricas y circulares inversas
Imágenes directas e inversas de conjuntos
Proporcionamos ejercicos sobre imágenes directas e inversas de conjuntos asociados a una aplicación. Enunciado Consideremos $X=\{1,2,3,4\},$ $Y=\{a,b,c\}$, la aplicación $f:X\to Y$ dada por $$f(1)=a,\;f(2)=a,\;f(3)=c,\;f(4)=c,$$ y los conjuntos $A=\{1,3\}$ y $B=\{a,b\}$. Determinar $f(A)$ y $f^{-1}(B).$ Sea $f:\mathbb{R}\to \mathbb{R}$ dada por $f(x)=x^2$. … Sigue leyendo