Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: inversas
Imágenes inversas de conjuntos compactos
Analizamos dos casos de compacidad de las imágenes inversas de conjuntos compactos. Enunciado Sean $X$ e $Y$ espacios topológicos y $f:X\to Y$ continua. Demostrar que si $X$ es compacto e $Y$ es de Hausdorff entonces, las imágenes inversas de conjuntos … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado compactos, conjuntos, imágenes, inversas
Comentarios desactivados en Imágenes inversas de conjuntos compactos
Derivación de funciones hiperbólicas inversas
Proporcionamos ejercicios sobre derivación de funciones hiperbólicas inversas. Enunciado Calcular $f'(x),$ siendo $f(x)=\operatorname{arth}x-\arctan x.$ Calcular $y’,$ siendo $y=\dfrac{\operatorname{arch}x}{x}.$ Calcular $\dfrac{d}{dx}\left(\operatorname{arsen}x\;\operatorname{arsh}x\right).$ Solución $\quad f'(x)=\dfrac{1}{1-x^2}-\dfrac{1}{1+x^2}=\dfrac{1+x^2-1+x^2}{(1-x^2)(1+x^2)}=\dfrac{2x^2}{(1-x^2)(1+x^2)}.$ $\quad y’=\dfrac{\dfrac{1}{\sqrt{x^2-1}}x-\operatorname{arch}x}{x^2}=\dfrac{x-\sqrt{x^2-1}\operatorname{arch}x}{x^2\sqrt{x^2-1}}.$ $\quad \dfrac{d}{dx}\left(\operatorname{arsen}x\;\operatorname{arsh}x\right)=\dfrac{1}{\sqrt{1-x^2}}\operatorname{arsh}x+\dfrac{1}{\sqrt{x^2+1}}\operatorname{arsen}x.$
Publicado en Análisis real y complejo
Etiquetado derivación, funciones, hiperbólicas, inversas
Comentarios desactivados en Derivación de funciones hiperbólicas inversas
Derivación de funciones trigonométricas y circulares inversas
Proporcionamos ejercicios sobre derivación de funciones trigonométricas y circulares inversas. Enunciado Hallar $y’$ siendo: $(a)\; y=a\cos x+b\operatorname{sen} x.\quad$ $(b)\; y=\dfrac{\operatorname{sen} x+\cos x}{\operatorname{sen} x-\cos x}.\quad$ $(c)\; y=x\tan x.$ Hallar: $(a)\; \dfrac{d}{dx}(x\operatorname{arcsen} x).\; (b)\;\dfrac{d}{dx}(\cot x-\tan x).\; (c)\;\dfrac{d}{dt}\left((t^2-2)\cos t-2t \operatorname{sen} t\right).$ Demostrar que: … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado circulares, derivación, funciones, inversas, trigonométricas
Comentarios desactivados en Derivación de funciones trigonométricas y circulares inversas
Imágenes directas e inversas de conjuntos
Proporcionamos ejercicos sobre imágenes directas e inversas de conjuntos asociados a una aplicación. Enunciado Consideremos $X=\{1,2,3,4\},$ $Y=\{a,b,c\}$, la aplicación $f:X\to Y$ dada por $$f(1)=a,\;f(2)=a,\;f(3)=c,\;f(4)=c,$$ y los conjuntos $A=\{1,3\}$ y $B=\{a,b\}$. Determinar $f(A)$ y $f^{-1}(B).$ Sea $f:\mathbb{R}\to \mathbb{R}$ dada por $f(x)=x^2$. … Sigue leyendo