Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: Lagrange
Ecuación de Lagrange
Proporcionamos ejercicios sobre la ecuación de Lagrange. Enunciado Se llama ecuación diferencial de Lagrange (o de D’Alembert), a toda ecuación de la forma $y=xg(y’)+f(y’).$ Denotando $p=y’,$ la ecuación se escribe en la forma $$y=xg(p)+f(p).\qquad (*)$$ Nota. Para $g(p)=p$ obtenemos la … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado ecuación, Lagrange
Comentarios desactivados en Ecuación de Lagrange
Polinomio de interpolación de Lagrange
Proporcionamos ejercicios sobre el polinomio de interpolación de Lagrange. Enunciado Sean $x_0,$ $x_1,$ $\ldots,$ $x_n$ elementos distintos dos a dos de un cuerpo $\mathbb{K}.$ Sean $\lambda_0,$ $\lambda_1,$ $\ldots,$ $\lambda_n$ elementos de $\mathbb{K}.$ Demostrar que existe un único polinomio $p\in\mathbb{K}[x]$ de … Sigue leyendo
Publicado en Álgebra
Etiquetado interpolación, Lagrange, polinomio
Comentarios desactivados en Polinomio de interpolación de Lagrange
Máximos y mínimos condicionados. Multiplicadores de Lagrange
Proporcionamos ejercicios sobre el cálculo de máximos y mínimos condicionados por multiplicadores de Lagrange. Enunciado Hallar los extremos de la función $f(x,y)=x+2y$ con la condición $x^2+y^2=5.$ Hallar los extremos de la función $f(x,y)=xy$ con la condición $x+y=1.$ Hallar los extremos … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado condicionados, Lagrange, máximos, mínimos, multiplicadores
Comentarios desactivados en Máximos y mínimos condicionados. Multiplicadores de Lagrange
Polinomio de Lagrange-Sylvester, representación integral
Enunciado Este problema tiene por objeto elaborar una representación integral para el polinomio de Lagrange-Sylvester. Supóngase dados un polinomio $p(z)$ de grado $n\geq 1$ y una curva de Jordan $\Gamma,$ que se recorre en sentido positivo y cuyo interior geométrico … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado integral, Lagrange, polinomio, representación, Sylvester
Comentarios desactivados en Polinomio de Lagrange-Sylvester, representación integral
Teorema de Lagrange
Proporcionamos ejercicios sobre el Teorema de Lagrange. Enunciado Comprobar que se verifican las hipótesis del teorema de Lagrange para la función $f(x)=x-x^3$ en el intervalo $[-2,1].$ Hallar el $c$ o los $c$ correspondientes. Aplicar el teorema de Lagrange para acotar … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado Lagrange, teorema
Comentarios desactivados en Teorema de Lagrange