Archivo de la etiqueta: Legendre

Ecuación de Legendre

Estudiamos la ecuación de Legendre. Enunciado Se llama ecuación de Legendre a la ecuación diferencial $$(1-x^2)y^{\prime\prime}-2xy^\prime +\alpha(\alpha+1)y=0\qquad (L)$$ con $\alpha$ real. Demostrar que la ecuación de Legendre se puede escribir en la forma $$\left((x^2-1)y^\prime\right)^\prime=\alpha (\alpha+1)y.$$ Demostrar que la ecuación de … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , | Comentarios desactivados en Ecuación de Legendre

Polinomios de Legendre y operador simétrico

Respecto de una base formada por polinomios de Legendre, determinamos la matriz diagonal de un operador simétrico. Enunciado En el espacio vectorial  $E=\mathbb{R}_n[x]$ de los polinomios reales de grado $\le n$ se define la aplicación $$T:E\to E,\quad T(f)=\left(pf’\right)’\text{ con }p(x)=x^2-1.$$ … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Polinomios de Legendre y operador simétrico