Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: límite
Límite por cambio de variable
RESUMEN. Calculamos un límite efectuando un cambio de variable, previo a la aplicación de la regla de L’Hopital. Enunciado Calcular el límite $L=\displaystyle\lim_{x \to\infty}\left(\displaystyle\frac{x}{\sin\frac{1}{x}} – x^2\right).$ Solución Efectuando el cambio de variable $t=1/x$ queda $$L=\lim_{t \to 0}\left(\displaystyle\frac{\dfrac{1}{t}}{\sin t} – \frac{1}{t^2}\right)=\lim_{t\to … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado cambio, límite, variable
Comentarios desactivados en Límite por cambio de variable
$\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
RESUMEN. Calculamos un límite por sumas de Riemann. Enunciado Calcular $L=\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$ Solución Denotemos $A(n)={\dfrac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots (n+n)}}.$ Entonces, $$A(n)=\displaystyle\sqrt[n]{\frac{(n+1)(n+2)\cdots (n+n)}{n^n}}=\sqrt[ n]{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\cdots \left(1+\frac{n}{n}\right)}.$$ Tomando logaritmos, $$\log A(n)=\displaystyle\frac{1}{n}\displaystyle\sum_{k=1}^n{\log \left(1+\frac{k}{n}\right)}$$ y usando la conocida fórmula de las sumas de Riemann $$\displaystyle\lim_{n\to +\infty}\sum_{k=1}^n\frac{1}{n}f\left(\frac{k}{n}\right)=\int_0^1f(x)\;dx$$ obtenemos $$\lim_{n\to … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado límite, Riemann, sumas
Comentarios desactivados en $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
Límite de la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{bk}{n}}}{n}$
RESUMEN. Hallamos el límite de una suma finita por cálculo directo y por sumas de Riemann. Enunciado. $1)$ Calcular la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{k}{n}}}{n}\;\; (b\in\mathbb{R})$. $2)$ Calcular $L=\displaystyle\lim_{n\to +\infty}\sum_{k=1}^n\frac{be^{\frac{k}{n}}}{n}.$ $3)$ Calcular el límite anterior por sumas de Riemann. Solución. $1)$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado finita, límite, suma
Comentarios desactivados en Límite de la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{bk}{n}}}{n}$
Límite de una sucesión por potencia enésima de una matriz
Calculamos el límite de una sucesión numérica usando la potencia enésima de una matriz. Enunciado Dada la sucesión $x_n$ tal que $x_1=1,x_2=2$ y $x_{n+2}=\dfrac{1}{2}\left(x_n+x_{n+1}\right)$ probar que $\displaystyle\lim_{n \to{+}\infty}{x_n}=\frac{5}{3}.$ Enunciado Podemos escribir $$\underbrace{\begin{bmatrix}{x_{n+2}}\\{x_{n+1}}\end{bmatrix}}_{X_{n+2}}=\underbrace{\begin{bmatrix}{1/2}&{1/2}\\{1}&{0}\end{bmatrix}}_{A}\underbrace{\begin{bmatrix}{x_{n+1}}\\{x_{n}}\end{bmatrix}}_{X_{n+1.}}$$ Por tanto, $X_{n+2}=AX_{n+1}=A^2X_{n}=\ldots =A^nX_2=A^n\begin{bmatrix}{2}\\{1}\end{bmatrix}.$ Es decir, $$\lim_{n \to{+}\infty}\begin{bmatrix}{x_{n+2}}\\{x_{n+1}}\end{bmatrix}=\lim_{n … Sigue leyendo
Límite de una sucesión de conjuntos
Definimos el concepto de límite de una sucesión de conjuntos y estudiamos algunas de sus propiedades. Enunciado Sea $A_1,A_2,A_3,\ldots$ una sucesión de conjuntos contenidos en un conjunto universal $U$. Se definen: $$\liminf A_n = \bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty} A_k,\quad \limsup A_n = \bigcap_{n=1}^{\infty} … Sigue leyendo