Archivo de la etiqueta: límite

Límite por cambio de variable

RESUMEN. Calculamos un límite efectuando un cambio de variable, previo a la aplicación de la regla de L’Hopital. Enunciado Calcular el límite $L=\displaystyle\lim_{x \to\infty}\left(\displaystyle\frac{x}{\sin\frac{1}{x}} – x^2\right).$ Solución Efectuando el cambio de variable $t=1/x$ queda $$L=\lim_{t \to 0}\left(\displaystyle\frac{\dfrac{1}{t}}{\sin t} – \frac{1}{t^2}\right)=\lim_{t\to … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Límite por cambio de variable

$\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$

RESUMEN. Calculamos un límite por sumas de Riemann. Enunciado Calcular $L=\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$ Solución Denotemos $A(n)={\dfrac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots (n+n)}}.$ Entonces, $$A(n)=\displaystyle\sqrt[n]{\frac{(n+1)(n+2)\cdots (n+n)}{n^n}}=\sqrt[ n]{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\cdots \left(1+\frac{n}{n}\right)}.$$ Tomando logaritmos, $$\log A(n)=\displaystyle\frac{1}{n}\displaystyle\sum_{k=1}^n{\log \left(1+\frac{k}{n}\right)}$$ y usando la conocida fórmula de las sumas de Riemann $$\displaystyle\lim_{n\to +\infty}\sum_{k=1}^n\frac{1}{n}f\left(\frac{k}{n}\right)=\int_0^1f(x)\;dx$$ obtenemos $$\lim_{n\to … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$

Límite de la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{bk}{n}}}{n}$

RESUMEN. Hallamos el límite de una suma finita por cálculo directo y por sumas de Riemann. Enunciado. $1)$ Calcular la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{k}{n}}}{n}\;\; (b\in\mathbb{R})$. $2)$ Calcular $L=\displaystyle\lim_{n\to +\infty}\sum_{k=1}^n\frac{be^{\frac{k}{n}}}{n}.$ $3)$ Calcular el límite anterior por sumas de Riemann. Solución. $1)$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Límite de la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{bk}{n}}}{n}$

Límite de una sucesión por potencia enésima de una matriz

Calculamos el límite de una sucesión numérica usando la potencia enésima de una matriz. Enunciado Dada la sucesión $x_n$ tal que $x_1=1,x_2=2$ y $x_{n+2}=\dfrac{1}{2}\left(x_n+x_{n+1}\right)$ probar que $\displaystyle\lim_{n \to{+}\infty}{x_n}=\frac{5}{3}.$ Enunciado Podemos escribir $$\underbrace{\begin{bmatrix}{x_{n+2}}\\{x_{n+1}}\end{bmatrix}}_{X_{n+2}}=\underbrace{\begin{bmatrix}{1/2}&{1/2}\\{1}&{0}\end{bmatrix}}_{A}\underbrace{\begin{bmatrix}{x_{n+1}}\\{x_{n}}\end{bmatrix}}_{X_{n+1.}}$$ Por tanto, $X_{n+2}=AX_{n+1}=A^2X_{n}=\ldots =A^nX_2=A^n\begin{bmatrix}{2}\\{1}\end{bmatrix}.$ Es decir, $$\lim_{n \to{+}\infty}\begin{bmatrix}{x_{n+2}}\\{x_{n+1}}\end{bmatrix}=\lim_{n … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , , | Comentarios desactivados en Límite de una sucesión por potencia enésima de una matriz

Límite de una sucesión de conjuntos

Definimos el concepto de límite de una sucesión de conjuntos y estudiamos algunas de sus propiedades. Enunciado Sea $A_1,A_2,A_3,\ldots$ una sucesión de conjuntos contenidos en un conjunto universal $U$. Se definen: $$\liminf A_n = \bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty} A_k,\quad \limsup A_n = \bigcap_{n=1}^{\infty} … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Límite de una sucesión de conjuntos