Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: límites
Límites en dos variables
RESUMEN. Proporcionamos ejercicios de límites en dos variables. Enunciado Demostrar usando la definición que $\displaystyle \lim_{(x,y)\to (0,0)}(x+y)=0.$ Demostrar usando la definición que $\displaystyle \lim_{(x,y)\to (0,0)}xy=0.$ Demostrar que $L=\displaystyle\lim\limits_{(x,y)\to (0,0)}\frac{x^3 – y^3}{x^2+y^2}=0.$ Se considera la función $$f(x,y)=\left \{ \begin{matrix} \displaystyle\frac{y}{x}\sin (x^2+y^2) … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado límites
Comentarios desactivados en Límites en dos variables
Caracterización de límites de funciones en espacios métricos por sucesiones
RESUMEN. Demostramos el teorema de caracterización de límites de funciones en espacios métricos por sucesiones. Teorema. Sean $(X,d)$ un espacio métrico, $A\subset X$, $f:A\to X$ una función, $a$ un punto de acumulación de $A$ y $b\in X.$ Entonces, $\displaystyle\lim_{x\to a}f(x)=b\Leftrightarrow … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado caracterización, espacios métricos, funciones, límites, sucesiones
Comentarios desactivados en Caracterización de límites de funciones en espacios métricos por sucesiones
Límites de funciones por la definición
Proporcionamos ejercicios de límites de funciones por la definición. Enunciado Demostrar que: $$a)\;\lim_{x\to 1}\;(2x+3)=5.\quad b)\; \lim_{x\to 2}\;\left(\frac{2}{3}x-1\right)=\frac{1}{3}.\quad c)\; \lim_{x\to 1/2}\;(-x-1)=-\frac{3}{2}.$$ Demostrar que $\;\;a)\;\displaystyle\lim_{x\to 0}x^2=0.\quad b)\;\lim_{x\to 0}x^3\operatorname{sen}x=0.$ Demostrar que: $\displaystyle\lim_{x\to 2}\;\left(x^2+x-2\right)=4.$ Demostrar que $\displaystyle\lim_{x\to 3} \frac{2}{x+1} =\frac{1}{2}.$ Demostrar que $\displaystyle\lim_{x\to +\infty}\frac{1}{x}=0.$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado definición, funciones, límites
Comentarios desactivados en Límites de funciones por la definición
Cálculo de límites de sucesiones mediante integrales
Enunciado Calcular $\displaystyle\lim_{n\to +\infty}\left(\frac{1}{n^2}+\frac{2}{n^2}+\frac{3}{n^2}+\cdots+\frac{n-1}{n^2}\right).$ Calcular $\displaystyle\lim_{n\to +\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{n+n}\right).$ Calcular $L=\displaystyle\lim_{n\to +\infty}\frac{1^p+2^p+3^p+\cdots+n^p}{n^{p+1}}\quad (p>0).$ Calcular $L=\displaystyle\lim_{n\to +\infty}\frac{1}{n}\sum_{k=1}^n\frac{k^2}{n^2}.$ Relacionar el límite $$\displaystyle\lim_{n\to \infty}\left(\dfrac{1}{n+1}+\dfrac{1}{n+2}+\ldots+\dfrac{1}{n+n}\right)$$ con la integral $\displaystyle\int_1^2\dfrac{1}{x}\;dx$. Calcular el límite anterior. Calcular $L=\displaystyle \lim_{n\to +\infty}\dfrac{\sqrt[n]{n!}}{n}.$ Solución Llamemos $L$ al límite pedido. Entonces,$$\begin{aligned}L&=\lim_{n\to +\infty}\frac{1}{n}\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\cdots+\frac{n-1}{n}\right)\\ &=\lim_{n\to … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado cálculo, integrales, límites, sucesiones
Comentarios desactivados en Cálculo de límites de sucesiones mediante integrales
Límites infinitos
Proporcionamos ejercicios sobre límites infinitos. Enunciado Demostrar que $\lim\; (2n+11)=+\infty,$ y que $\lim\:(-3n+7)=-\infty.$ Sea $\{x_n\}$ convergente con límite no nulo, e $\{y_n\}$ divergente. Hallar el límite de la sucesión $\{x_ny_n\}$ Siendo $P(x)\in \mathbb{R}[x]$, calcular $L=\displaystyle\lim_{n\to +\infty}P(n).$ Sean $\{x_n\}$ e $\{y_n\}$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado infinitos, límites
Comentarios desactivados en Límites infinitos