Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: lineales
Aplicaciones lineales continuas entre espacios normados
Estudiamos las aplicaciones lineales continuas entre espacios normados. Enunciado 1. Sean $E$ y $F$ espacios normados y $f:E\to F$ lineal. Demostrar que si $f$ es continua en un puntto $a\in E,$ entonces es uniformemente continua en $E.$ 2. Sean $E$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado aplicaciones, continuas, espacios, lineales, normados
Comentarios desactivados en Aplicaciones lineales continuas entre espacios normados
Sistemas lineales según parámetros
Discutimos sistemas lineales según parámetros. Enunciado Discutir y resolver en $\mathbb{R}$ según los valores del parámetro real $a$ el sistema lineal $$\left \{ \begin{matrix}ax+y+z=1\\x+ay+z=a\\x+y+az=a.\end{matrix}\right. $$ Discutir en $\mathbb{R}$ según los valores de los parámetro reales $c$ y $d$ el sistema … Sigue leyendo
Publicado en Álgebra
Etiquetado lineales, parámetros, sistemas
Comentarios desactivados en Sistemas lineales según parámetros
Sistemas lineales, método de Gauss: problemas diversos
Proponemos problemas diversos sobre el método de Gauss para sistemas lineales. Enunciado Disponemos de tres montones de monedas y duplicamos las monedas del segundo montón tomando las necesarias del primer montón. Duplicamos después las monedas del tercer montón a costa … Sigue leyendo
Sistemas lineales escalonados
Proponemos ejercicios sobre sistemas lineales escalonados. Enunciado Resolver sobre $\mathbb{R}$ el sistema escalonado $$\left \{\begin{array}{rcrcrcr} 3 \,x_1 & + & x_2 & – & \,x_3 & = & 9 \\ & & 2\,x_2 & + & 5 \,x_3 & = … Sigue leyendo
Publicado en Álgebra
Etiquetado escalonados, lineales, sistemas
Comentarios desactivados en Sistemas lineales escalonados
Sistemas diferenciales lineales no homogéneos con coeficientes constantes
Resolvemos dos sistemas diferenciales lineales no homogéneos con coeficientes constantes. Enunciado Resolver el sistema diferencial: $$X’=\begin{bmatrix}{\;\;4}&{1}\\{-2}&{1}\end{bmatrix}X+\begin{bmatrix}{0}\\{-2e^{t}}\end{bmatrix},$$ con la condición $X(0)=\begin{bmatrix}{1}\\{0}\end{bmatrix}.$ Resolver el sistema diferencial: $$X’=\begin{bmatrix}{-1}&{0}&{0}\\{\;\;0}&{2}&{1}\\{\;\;0}&{0}&{2}\end{bmatrix}X+\begin{bmatrix}{t}\\{1}\\{0}\end{bmatrix},$$ con la condición $X(0)=\begin{bmatrix}{\;\;0}\\{\;\;1}\\{-1}\end{bmatrix}.$ Solución Recordemos el siguiente teorema: sea el sistema diferencial lineal no … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado coeficientes, constantes, diferenciales, homogéneos, lineales, no, sistemas
Comentarios desactivados en Sistemas diferenciales lineales no homogéneos con coeficientes constantes