Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: logaritmo
Logaritmo complejo
Estudiamos propiedades del logaritmo complejo. Enunciado Demostrar que $z=0$ no tiene logaritmos y que si $z\neq 0$ entonces $$\log z=\log \left|z\right|+i\arg z,$$ en donde $\arg z$ representa el conjunto de los argumento de $z.$ Interpretar $\log z$ como una aplicación … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado complejo, logaritmo
Comentarios desactivados en Logaritmo complejo
Logaritmo de una matriz
Se define el logaritmo de una matriz y se estudian algunas de sus propiedades. Enunciado Sean: $i)$ $A=\begin{bmatrix}{0}&{-2}&{-2}\\{1}&{\;\;3}&{\;\;1}\\{0}&{\;\;0}&{\;\;2}\end{bmatrix}\in \mathbb{R}^{3\times 3}.$ $ii)$ $\mathcal{S}$ el conjunto formado por todas las matrices de $\mathbb{R}^{3\times 3}$ tales que son diagonalizables y tienen todos los … Sigue leyendo