Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: $mathbb{C} [x]$
Factorización en $\mathbb{C} [x]$ de $p(x)=(x+1)^n+(x-1)^n$
Enunciado Descomponer $p(x)=(x+1)^n+(x-1)^n \in \mathbb{C}[x]$ en factores lineales. Solución Hallemos las raíces complejas de $p(x).$ Tenemos $$p(x)=0\Leftrightarrow (x+1)^n+(x-1)^n=0\Leftrightarrow{}\left(\displaystyle\frac{x+1}{x-1}\right)^n=-1$$ $$\Leftrightarrow{}\dfrac{x+1}{x-1}=\sqrt[ n]{-1}=\sqrt[ n]{e^{\pi i}}=e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}=z_k,\; (k=0,1,\ldots, n-1).$$ Despejando $x$ obtenemos las raíces $$x_k=\dfrac{z_k+1}{z_k-1}=\dfrac{e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}+1}{e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}-1}.$$ Llamando $\alpha=\pi/n+2k\pi/n$ tenemos $$x_k=\dfrac{e^{\alpha i}+1}{e^{\alpha i}-1}=\dfrac{e^{(-\alpha/2)i}}{e^{(-\alpha/2)i}}\cdot \dfrac{e^{\alpha i}+1}{e^{\alpha i}-1}=\dfrac{e^{(\alpha/2) i}+e^{(-\alpha/2)i}}{e^{(\alpha/2) … Sigue leyendo
Publicado en Álgebra
Etiquetado $mathbb{C} [x]$, $p(x)=(x+1)^n+(x-1)^n$, factorización
Comentarios desactivados en Factorización en $\mathbb{C} [x]$ de $p(x)=(x+1)^n+(x-1)^n$