Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: $mathbb{R}^times$ y $mathbb{C}^times$
Los grupos $\mathbb{R}^\times$ y $\mathbb{C}^\times$ no son isomorfos
Demostramos que los grupos multiplicativos de los reales y los complejos no son isomorfos. Enunciado Demostrar que los grupos multiplicativos $\mathbb{R}^\times$ y $\mathbb{C}^\times$ no son isomorfos. Solución Supongamos que existe un isomorfismo $f:\mathbb{C}^\times\to \mathbb{R}^\times.$ Tenemos $f(i^2)=f(-1).$ Ahora bien, $$1=f(1)=f[(-1)(-1)]=f(-1)f(-1)=f(-1)^2\Rightarrow f(-1)=\pm … Sigue leyendo
Publicado en Álgebra
Etiquetado $mathbb{R}^times$ y $mathbb{C}^times$, grupos, multiplicativos, no isomorfos
Comentarios desactivados en Los grupos $\mathbb{R}^\times$ y $\mathbb{C}^\times$ no son isomorfos