Archivo de la etiqueta: matriz

Matriz del cuadrado de un endomorfismo

RESUMEN. Calculamos la matriz del cuadrado de un endomorfismo por dos métodos distintos. Enunciado Sea $V$ un espacio vectorial real y $B=\{v_1,v_2\}$, $B^\prime=\{v_2,-v_1+v_2\}$ sendas bases de $V.$ Se considera el endomorfismo $f:V\to V$ tal que su matriz en las bases … Sigue leyendo

Publicado en Álgebra | Etiquetado , | Comentarios desactivados en Matriz del cuadrado de un endomorfismo

Expresión matricial de las isometrías del plano

RESUMEN. Vamos a trasladar las propiedades de las isometrías, al lenguaje matricial sin salirnos del cuerpo base $\mathbb{R}$. Sabido es que las matrices ortogonales de $\mathbb{R}^{2\times 2}$ son aquellas matrices $A$ que satisfacen $A^T=A^{-1}$ o equivalentemente las que satisfacen $A^TA=I$. … Sigue leyendo

Publicado en Álgebra | Etiquetado , | Comentarios desactivados en Expresión matricial de las isometrías del plano