Archivo de la etiqueta: mínima

Mínima $\sigma-$álgebra que contiene a otra y a un conjunto

RESUMEN. Determinamos la mínima $\sigma$-álgebra que contiene a otra y a un conjunto. Enunciado Sea $\mathcal{F}$ una $\sigma-$álgebra en un conjunto $\Omega$ y $A\subset{\Omega}$ tal que $A\not\in \mathcal{F}$. Demostrar que la más pequeña $\sigma-$álgebra que contiene a $\mathcal{F}\cup\{A\}$ es $$\mathcal{G}=\left\{{(A\cap{B_1})\cup{(A^{c}\cap{B_2})}} … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Deja un comentario

Vector de norma mínima en un subconjunto de un espacio de Hilbert

RESUMEN. Demostramos que en todo subconjunto no vacío convexo y cerrado de un espacio de Hilbert existe un vector de norma mínima. Enunciado Sea $A$ un subconjunto no vacío convexo y cerrado de un espacio de Hilbert $H$. Demostrar que … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Vector de norma mínima en un subconjunto de un espacio de Hilbert