Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: multiplicativo
Los grupos aditivo y multiplicativo de un cuerpo no son isomorfos
Demostramos que los grupos aditivo y multiplicativo de un cuerpo no pueden ser isomorfos. Enunciado Demostrar que los grupos aditivo y multiplicativo de un cuerpo nunca son isomorfos. Solución Sea $K$ un cuerpo y sean $K^+$ y $K^{\times}$ los grupos … Sigue leyendo
Publicado en Álgebra
Etiquetado aditivo, cuerpo, grupos, multiplicativo, no isomorfos
Comentarios desactivados en Los grupos aditivo y multiplicativo de un cuerpo no son isomorfos
Grupo multiplicativo de las unidades
Proporcionamos ejercicios sobre el grupo multiplicativo de las unidades. Enunciado Determinar las unidades (o elementos invertibles) del anillo $\mathbb{Z}.$ Determinar las unidades del anillo $\mathbb{R}^{n\times n}.$ de las matrices reales cuadradas de orden $n.$ Demostrar que si $u$ es unidad … Sigue leyendo
Publicado en Álgebra
Etiquetado grupo, multiplicativo, unidades
Comentarios desactivados en Grupo multiplicativo de las unidades