Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: n
Regiones determinadas por $n$ rectas del plano
Demostramos por inducción una fórmula para determinar el número de regiones determinadas por $n$ rectas del plano. Enunciado Demostrar por inducción que $n$ rectas del plano dos a dos no paralelas y tales que ninguna terna pasa por un punto … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado n, plano, rectas, regiones
Comentarios desactivados en Regiones determinadas por $n$ rectas del plano
Desarrollo de Taylor de orden $n$ de $f(x,y)=\log (x+y)$
Calculamos el desarrollo de Taylor de orden $n$ de $f(x,y)=\log (x+y)$ con resto. Enunciado Desarrollar la función $f(x,y)=\log (x+y)$ por la fórmula de Taylor de orden $n$ en un entorno de $(1,1).$ Solución Hallemos las primeras derivadas parciales de $f:$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $f(x y)=log (x+y)$, desarrollo, n, orden, Taylor
Comentarios desactivados en Desarrollo de Taylor de orden $n$ de $f(x,y)=\log (x+y)$
Determinante e inversa de orden n
Calculamos un determinante y una inversa de orden $n.$ Enunciado Se considera la matriz $M_n= \begin{bmatrix} a_1+a_2 & -a_2 & 0 & 0 & \ldots & 0 & 0 & 0\\ -a_2 & a_2+a_3 & -a_3 & 0 & \ldots … Sigue leyendo
Publicado en Álgebra
Etiquetado determinante, inversa, n, orden
Comentarios desactivados en Determinante e inversa de orden n
Inversa de orden n por el método de Gauss
Hallamos la inversa de una matriz de orden $n$ por el método de Gauss. Enunciado Hallar la inversa de la matriz de orden $n>1:$ $$A=\begin{bmatrix} 0 & 1 & 1&\ldots & 1\\ 1 &0 & 1&\ldots & 1 \\ 1 … Sigue leyendo
Inversa de orden n por sistema de columnas
Hallamos una inversa de orden $n$ por sistema de columnas. Enunciado Hallar la inversa de la matriz de orden $n:$ $$A=\begin{bmatrix} 1 & 2 & 3&\ldots & n\\ 0 &1 & 2&\ldots & n-1 \\ 0 & 0 & 1&\ldots … Sigue leyendo