Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: no isomorfos
Los grupos $\mathbb{R}^\times$ y $\mathbb{C}^\times$ no son isomorfos
Demostramos que los grupos multiplicativos de los reales y los complejos no son isomorfos. Enunciado Demostrar que los grupos multiplicativos $\mathbb{R}^\times$ y $\mathbb{C}^\times$ no son isomorfos. Solución Supongamos que existe un isomorfismo $f:\mathbb{C}^\times\to \mathbb{R}^\times.$ Tenemos $f(i^2)=f(-1).$ Ahora bien, $$1=f(1)=f[(-1)(-1)]=f(-1)f(-1)=f(-1)^2\Rightarrow f(-1)=\pm … Sigue leyendo
Publicado en Álgebra
Etiquetado $mathbb{R}^times$ y $mathbb{C}^times$, grupos, multiplicativos, no isomorfos
Comentarios desactivados en Los grupos $\mathbb{R}^\times$ y $\mathbb{C}^\times$ no son isomorfos
Los grupos aditivo y multiplicativo de un cuerpo no son isomorfos
Demostramos que los grupos aditivo y multiplicativo de un cuerpo no pueden ser isomorfos. Enunciado Demostrar que los grupos aditivo y multiplicativo de un cuerpo nunca son isomorfos. Solución Sea $K$ un cuerpo y sean $K^+$ y $K^{\times}$ los grupos … Sigue leyendo
Publicado en Álgebra
Etiquetado aditivo, cuerpo, grupos, multiplicativo, no isomorfos
Comentarios desactivados en Los grupos aditivo y multiplicativo de un cuerpo no son isomorfos