Archivo de la etiqueta: normas p

Normas $p$

Estudiamos las normas $p$ en $\mathbb{K}^n.$ Enunciado Sea $p$ real con $1\leq p<+\infty.$ Demostrar que es una norma en $\mathbb{K}^n$ ($\mathbb{K}=\mathbb{R}$ o $\mathbb{K}=\mathbb{C}$): $$\left\|x\right\|_{p}=\left(\sum_{k=1}^n\left|x_k\right|^p\right)^{1/p},\quad x=(x_1,\ldots,x_n)\in \mathbb{K}^n.$$ Demostrar que para $0<p<1,$ la aplicación $$\left\|{x}\right\|_p=\left(\displaystyle\sum_{i=1}^n{\left |{x_i}\right |^{p}}\right)^{1/p},\quad x=(x_1,\ldots,x_n)\in\mathbb{K}^n$$ no es una norma … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado | Comentarios desactivados en Normas $p$