Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: normas
Normas de matrices y perturbación de sistemas
En el pdf anexo, estudiamos las normas de matrices y como aplicación, algunas perturbaciones en sistemas lineales: Normas de matrices y perturbación de sistemas (16 pág, 276 KB). CONTENIDOS Normas en $\mathbb{K}^{m\times n}$. Dado que el conjunto $\mathbb{K}^{m\times n}$ ($\mathbb{K}=\mathbb{R}$ … Sigue leyendo
Publicado en Álgebra
Etiquetado matrices, normas, perturbación, sistemas
Comentarios desactivados en Normas de matrices y perturbación de sistemas
Normas equivalentes
Demostramos una caracterización de normas equivalentes y la equivalencia de las normas $p$ para $p=1,2,\infty.$ Enunciado Demostrar que dos normas $\left\|\;\right\|$ y $\left\|\;\right\|^*$ de un espacio espacio vectorial $E$ son equivalentes, si y sólo si existen constantes reales $a>0$ y … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado equivalentes, normas
Comentarios desactivados en Normas equivalentes
Normas no equivalentes
En el siguiente problema, damos un ejemplo de dos normas no equivalentes en un espacio vectorial de dimensión infinita, y demostramos que en todo espacio vectorial normado de dimensión infinita existen al menos dos normas que no son equivalentes. Enunciado … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado equivalentes, no, normas
Comentarios desactivados en Normas no equivalentes