Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: ntegración
Integración de funciones trigonométricas (2)
Enunciado Calcular $I=\displaystyle\int\tan^{4}x\;dx.$ Calcular $I=\displaystyle\int\tan^{5}x\;dx.$ Calcular $I=\displaystyle\int\cot^{4}x\;dx.$ Calcular $I=\displaystyle\int\tan^{2}7x\;dx.$ Solución Tenemos: $$I=\int \tan^4x\;dx=\int \tan^{2}x\;\tan^2x\;dx=\int\tan^{2}x\;(\sec^2x-1)\;dx$$ $$=\int\tan^{2}x\;\sec^2x\;dx-\int\tan^{2}x\;dx.$$ Efectuando el cambio $t=\tan x,$ $dt=\sec^2x,$ por tanto $$\int\tan^{2}x\;\sec^2x\;dx=\int t^2dt=\frac{t^3}{3}+C=\frac{\tan^3x}{3}+C.$$ Por otra parte: $$\int \tan^{2}x\;dx=\int(\sec^2x-1)\;dx=\tan x-x+C.$$ En consecuencia, $$I=\frac{\tan^3x}{3}-\tan x+x+C.$$ Tenemos: $$I=\int \tan^5x\;dx=\int \tan^{3}x\;\tan^2x\;dx=\int\tan^{3}x\;(\sec^2x-1)\;dx$$ $$=\int\tan^{3}x\;\sec^2x\;dx-\int\tan^{3}x\;dx.$$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado 2, funciones, ntegración, trigonométricas
Comentarios desactivados en Integración de funciones trigonométricas (2)