Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: números
Números complejos: problemas diversos (2)
Proporcionamos algunos problemas de recapitulación de números complejos. Enunciado Resolver la ecuación en $\mathbb{C}:\;$ $z^4+2z^3+4z^2+8z+16=0.$ Para $a,b$ números reales, calcular las sumas $$R=\cos a+\cos (a+b)+\cos (a+2b)+\cdots+\cos \left(a+(n-1)b\right),$$ $$I=\operatorname{sen}a+\operatorname{sen}(a+b)+\operatorname{sen}(a+2b)+\cdots+\operatorname{sen}\left(a+(n-1)b\right).$$ Demostrar que si $0\neq z=\cos\theta+i\operatorname{sen}\theta,\;(\theta\in \mathbb{R})$ y $n$ natural, entonces $$z^n+\frac{1}{z^n}=2\cos n\theta.$$ … Sigue leyendo
Forma trigonométrica de los números complejos
En los siguientes ejercicios usamos la forma trigonométrica de los números complejos. Enunciado Expresar en forma binómica $1)\;2[\cos 135^{\text{o}}+i\operatorname{sen } 135^{\text{o}}].\quad 2)\;5[\cos (-\pi/3)+i\operatorname{sen }(-\pi/3)].$ Expresar en forma trigonométrica $3)\;\sqrt{3}-i.\quad 4)\;-1+i.\quad 5)\;-4-4\sqrt{3}i.\quad 6)\;-3i.$ Calcular las siguientes potencias expresando el resultado en … Sigue leyendo
Publicado en Álgebra
Etiquetado complejos, forma, números, trigonométrica
Comentarios desactivados en Forma trigonométrica de los números complejos
Números complejos: problemas diversos (1)
Proporcionamos algunos problemas de recapitulación de números complejos. Enunciado Sea $D=\left\{ z\in\mathbb{C}:\left|z\right|>1\right\}.$ Demostrar que para todo $w_1,w_2\in D$ se verifica $$\left|\dfrac{w_1 – w_2 }{1-\overline{w_ 1 }w_ 2 }\right|<1 .$$ Demostrar que $\left|(1+i)z^3 +iz\right|<3/4$ si $\left|z\right|<1/2.$ Usando la forma trigonométrica de … Sigue leyendo
Cuerpo de los números complejos
Demostramos que el conjunto de los números complejos es un cuerpo con las operaciones habituales. Enunciado Demostrar que $\left(\mathbb{C},+,\cdot\right)$ es cuerpo, siendo $+$ y $\cdot$ las operaciones habituales en $\mathbb{C}.$ Solución $a)$ $\left(\mathbb{C},+\right)$ es grupo abeliano. En efecto, $1.$ Interna. … Sigue leyendo
Operaciones con números complejos
Proporcionamos ejercicios de operaciones con números complejos. Enunciado Expresar en forma binómica cada uno de los siguientes números complejos: $$a)\;\frac{3-2i}{1+4i}.\;\;b)\;i^{23}.\;\;c)\;\frac{1}{z}.\;\;d)\;\frac{z-1}{z+1}.\;\;e)\;(1-2i)^4.\;\;f)\;\sqrt{3-4i}.$$ Resolver en $\mathbb{C}$ la ecuación $z^2-(2+i)z-1+7i=0.$ Determinar todos los números complejos que son conjugados con su cubo. $a)$ Demostrar que … Sigue leyendo
Publicado en Álgebra
Etiquetado complejos, números, operaciones
Comentarios desactivados en Operaciones con números complejos