Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: órbitas
Tres órbitas en un conjunto de nivel
Determinamos las tres órbitas que componen un conjunto de nivel de un sistema autónomo dado. Enunciado Dado el sistema $\left \{ \begin{matrix}x’=y^2\\y’=x^2\end{matrix}\right.$ determinar una integral primera $F(x,y)$ no constante del mismo. Comprobar. Dibujar las órbitas que determina el conjunto de … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado conjunto, nivel, órbitas, tres
Comentarios desactivados en Tres órbitas en un conjunto de nivel
Teorema de Bendixson-Dulac, órbitas cerradas
Usamos el teorema de Bendixson-Dulac para el estudio de las órbitas cerradas asociadas a un sistema autónomo. Enunciado (a) Aplicar el teorema de Bendixson a los sistemas $(i)\;\left \{ \begin{matrix}x’_1=e^{x_1}\\x’_2=1-x_1.\end{matrix}\right.\quad (ii)\;\left \{ \begin{matrix}x’_1=x_2\\x’_2=1-x_1^2.\end{matrix}\right. \quad(iii)\;\left \{ \begin{matrix}x’=-y-x+x(x^2+y^2)\\y’=x-y+y(x^2+y^2).\end{matrix}\right.$ (b) Usar el teorema … Sigue leyendo