Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: ortogonal
Ortogonalidad en espacios prehilbertianos
RESUMEN. Estudiamos la ortogonalidad en espacios prehilbertianos. Enunciado Sea $E$ un espacio prehilbertiano y sean $x,y\in E.$ Se dice que $x$ es ortogonal a $y$ y se escribe $x\perp y$ si $\langle x,y\rangle=0.$ (1) Demostrar que la relación es simétrica … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado ortogonal, prehilberianos
Comentarios desactivados en Ortogonalidad en espacios prehilbertianos
Operador ortogonal
Proporcionamos ejercicios sobre el operador ortogonal. Enunciado Comprobar que en $\mathbb{R}^3$ con el producto escalar usual, el siguiente operador es ortogonal $$T\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\dfrac{1}{3}\begin{bmatrix}{2}&{-2}&{1}\\{2}&{1}&{-2}\\{1}&{2}&{2}\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}.$$ Demostrar que si $\lambda$ es valor propio de un operador ortogonal $T$ en un espacio euclídeo $E,$ entonces … Sigue leyendo
Proyección ortogonal
Proporcionamos ejercicios sobre la proyección ortogonal sobre un subespacio. Enunciado En $\mathbb{R}^3$ con el producto escalar $$\left<(x_1,x_2,x_3),(y_1,y_2,y_3)\right>=x_1y_1+2x_2y_2+3x_3y_3,$$ hallar la proyección ortogonal del vector $x=(1,1,1)$ sobre el subespacio $$F\equiv x_1+x_2+2x_3=0.$$ En el espacio $\mathbb{R}_2[x]$ con el producto escalar $\left<p(x),q(x)\right>= \int_0^1p(x)q(x)\;dx$ determinar … Sigue leyendo
Publicado en Álgebra
Etiquetado ortogonal, proyección
Comentarios desactivados en Proyección ortogonal
Subespacio ortogonal
Proporcionamos ejercicios sobre el concepto de subespacio ortogonal. Enunciado Sea $E$ un espacio euclídeo y $S$ un subconjunto de $E.$ Demostrar que $S^{\perp}$ es subespacio de $E.$ Sea el espacio euclídeo $\left(\mathbb{R}^3,\left<\;,\;\right>\right)$ con $$\left<(x_1,x_2,x_3),(y_1,y_2,y_3)\right>=x_1y_1+2x_2y_2+3x_3y_3.$$ Determinar una base de $F^{\perp}$ siendo … Sigue leyendo
Publicado en Álgebra
Etiquetado ortogonal, subespacio
Comentarios desactivados en Subespacio ortogonal
Subespacio ortogonal al de las matrices diagonales
Calculamos la dimensión y una base del subespacio ortogonal al de las matrices diagonales con el producto escalar $\langle A,B\rangle=\text{tr }AB^t.$ Enunciado Sea $E$ el espacio vectorial de las matrices cuadradas de orden $n$ y entradas reales. Se considera el … Sigue leyendo
Publicado en Álgebra
Etiquetado diagonales, matrices, ortogonal, subespacio
Comentarios desactivados en Subespacio ortogonal al de las matrices diagonales