Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: parametrizaciones
Dos parametrizaciones de la hipérbola
Proporcionamos dos parametrizaciones de la hipérbola, una trigonométrica y otra racional. Enunciado Se considera la hipérbola $$H=\{(x,y)\in\mathbb{R}^2: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\},\quad (a>0,b>0).$$ Demostrar que $$H=\{(x,y)\in\mathbb{R}^2:x=\frac{a}{\cos \theta},\;y=b\tan \theta,\quad \cos\theta\ne 0\},$$ lo cual proporciona una parametrización trigonométrica de la elipse. Demostrar que $$H=\{(x,y)\in \mathbb{R}^2: x=\frac{1}{2}a\left(t+\frac{1}{t}\right),\;y=\frac{1}{2}b\left(1-\frac{1}{t}\right),\; … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado dos, hipérbola, parametrizaciones
Comentarios desactivados en Dos parametrizaciones de la hipérbola
Dos parametrizaciones de la elipse
Proporcionamos dos parametrizaciones de la elipse, una trigonométrica y otra racional. Enunciado Se considera la elipse $$E=\{(x,y)\in\mathbb{R}^2: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\},\quad (a>0,b>0).$$ Demostrar que $$E=\{(x,y)\in\mathbb{R}^2:x=a\cos \theta,\;y=b\sin \theta,\quad \theta \in [-\pi,\pi)\},$$ lo cual proporciona una parametrización trigonométrica de la elipse. Demostrar que $$E\setminus\{(-a,0)\}=\{(x,y)\in \mathbb{R}^2: … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado dos, elipse, parametrizaciones
Comentarios desactivados en Dos parametrizaciones de la elipse