Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: polar
Forma polar de una forma cuadrática
Proporcionamos ejercicios sobre la forma polar de una forma cuadrática. Enunciado Sea $q:E\to \mathbb{K}$ una forma cuadrática con $\text{carac }\mathbb{K}\neq 2.$ Demostrar que la forma polar de $q$ es $$\frac{1}{2}\left(q(x+y)-q(x)-q(y)\right).$$ Se considera la forma cuadrática $q:\mathbb{R}^3\to \mathbb{R}:$ $$q(x_1,x_2,x_3)=x_1^2+7x_2^2-x_3^2+8x_1x_2+5x_1x_3-4x_2x_3.$$ Determinar la … Sigue leyendo
Publicado en Álgebra
Etiquetado cuadrática, forma, polar
Comentarios desactivados en Forma polar de una forma cuadrática