Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: producto
Producto directo externo de grupos
RESUMEN. Construimos el producto directo externo de grupos. Enunciado Sea $\{G_i:i\in I\}$ una colección de gupos con notación multiplicativa y consideremos el producto cartesiano $$G=\prod_{i\in I}G_i=\{f:I\to\bigcup_{i\in I}G_i,f\text{ aplicación}:f(i)\in G_i\;\forall i\in I\}.$$ Para cada par de elementos $f,g\in G$ definimos $fg$ … Sigue leyendo
Producto de cardinales
Definimos el producto de cardinales y demostramos algunas de sus propiedades. Deinición. Sean $\mathfrak{a}=|A|$, y $\mathfrak{b}=|B|$ dos cardinales. Se define su producto como $\mathfrak{a}\mathfrak{b}=|A\times B|$. La operación está bien definida pues si $\mathfrak{a}=|A_1|$ y $\mathfrak{b}=|B_1|$ entonces existen biyecciones $f:A\to A_1$, … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado cardinales, producto
Comentarios desactivados en Producto de cardinales
Producto tensorial
Definimos el producto tensorial de $n$ espacios vectoriales. Vamos a resolver el problema de la aplicación universal para aplicaciones multilineales y que nos llevará a la contrucción del producto tensorial. Supongamos que el conjunto de índices $\Delta$ es un espacio … Sigue leyendo
Espacio vectorial producto
Construimos el espacio vectorial producto de una colección cualquiera de espacios vectoriales. Enunciado Sea $\Delta$ un conjunto no vacío de índices y $\{V_i:i\in\Delta\}$ una colección de espacios vectoriales sobre el cuerpo $K$. El conjunto producto cartesiano de los $V_i$ se … Sigue leyendo
Acotación del rango del producto de dos matrices
Demostramos una acotación del rango del producto de dos matrices. Enunciado Sean $\mathbb{K}$ un cuerpo y $A$ y $B$ matrices multiplicables con elementos en $\mathbb{K}.$ Demostrar que $\text{rango }(AB)\leq \min\left\{\text{rango }A, \text{rango }B\right\}.$ Solución Supongamos que $A\in\mathbb{K}^{m\times n}$, $B\in\mathbb{K}^{n\times p}$: … Sigue leyendo