Archivo de la etiqueta: reales

$A$ y $B$ matrices reales y semejantes como complejas, lo son como reales

Demostramos que dos matrices reales semejantes como complejas, lo son como reales. Aplicamos éste resultado para dar una forma canónica de una matriz cuadrada cuyo cuadrado es la opuesta de la identidad. Enunciado 1.  Sean $A$ y $B$ matrices cuadradas, … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , , , | Comentarios desactivados en $A$ y $B$ matrices reales y semejantes como complejas, lo son como reales

Espacio vectorial de las funciones reales

Construimos el espacio vectorial de las funciones reales. Enunciado Sea $X$ un conjunto distinto del vacío y sea $\mathcal{F}(X,\mathbb{R})$ el conjunto de todas las funciones de $X$ en $\mathbb{R}.$ Se definen en $\mathcal{F}(X,\mathbb{R})$ las operaciones: Suma. Para todo $f,g$ elementos … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Espacio vectorial de las funciones reales