Archivo de la etiqueta: Riemann

Teorema de reordenación de Riemann

Demostramos el teorema de Riemann de la reordenación de series: dada una serie real condicionalmente convergente y dado $x\in [-\infty,+\infty]$, existe una reordenación de la serie cuya suma es $x$. Enunciado Por simplicidad, denotaremos $\sum a_n=\sum_{n=1}^{\infty}a_n$. Demostrar que si la … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , | Comentarios desactivados en Teorema de reordenación de Riemann

La función de Thomae es integrable Riemann en [0,1]

Demostramos que la función de Thomae es integrable Riemann en el intervalo $[0,1].$ Enunciado Se define la función de Thomae como la función $f:\mathbb{R}\to \mathbb{R}$ tal que $$f(x) = \begin{cases} 1 &\text{si }x=0\\ \dfrac{1}{q} &\text{si }x\text{ is racional, }x=\dfrac{p}{q},\; q … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , | Comentarios desactivados en La función de Thomae es integrable Riemann en [0,1]