Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: Riemann
Función zeta de Riemann
RESUMEN. Definimos la función zeta de Riemann en la región $\text{Re z} > 1$ Teorema Para $\text{Re }z > 1$ se define $$\zeta (z):=\sum_{n=1}^{+\infty}\frac{1}{n^z}$$ Demostrar que $\zeta$ está bien definida y es analítica. A la función $\zeta$ de la llama … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado función, Riemann, zeta
Comentarios desactivados en Función zeta de Riemann
$\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
RESUMEN. Calculamos un límite por sumas de Riemann. Enunciado Calcular $L=\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$ Solución Denotemos $A(n)={\dfrac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots (n+n)}}.$ Entonces, $$A(n)=\displaystyle\sqrt[n]{\frac{(n+1)(n+2)\cdots (n+n)}{n^n}}=\sqrt[ n]{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\cdots \left(1+\frac{n}{n}\right)}.$$ Tomando logaritmos, $$\log A(n)=\displaystyle\frac{1}{n}\displaystyle\sum_{k=1}^n{\log \left(1+\frac{k}{n}\right)}$$ y usando la conocida fórmula de las sumas de Riemann $$\displaystyle\lim_{n\to +\infty}\sum_{k=1}^n\frac{1}{n}f\left(\frac{k}{n}\right)=\int_0^1f(x)\;dx$$ obtenemos $$\lim_{n\to … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado límite, Riemann, sumas
Comentarios desactivados en $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
Teorema de reordenación de Riemann
Demostramos el teorema de Riemann de la reordenación de series: dada una serie real condicionalmente convergente y dado $x\in [-\infty,+\infty]$, existe una reordenación de la serie cuya suma es $x$. Enunciado Por simplicidad, denotaremos $\sum a_n=\sum_{n=1}^{\infty}a_n$. Demostrar que si la … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado reordenación, Riemann, series, teorema
Comentarios desactivados en Teorema de reordenación de Riemann
La función de Thomae es integrable Riemann en [0,1]
Demostramos que la función de Thomae es integrable Riemann en el intervalo $[0,1].$ Enunciado Se define la función de Thomae como la función $f:\mathbb{R}\to \mathbb{R}$ tal que $$f(x) = \begin{cases} 1 &\text{si }x=0\\ \dfrac{1}{q} &\text{si }x\text{ is racional, }x=\dfrac{p}{q},\; q … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado función, integrable, Riemann, Thomae
Comentarios desactivados en La función de Thomae es integrable Riemann en [0,1]
Convergencia de las series de Riemann
Demostramos el teorema acerca de la convergencia o divergencia de las series de Riemann. Enunciado Se consideran la series de Riemann $$\displaystyle\sum_{n=1}^{+\infty}\frac{1}{n^p},\;p\in\mathbb{R}.$$ Analizar su convergencia usando el criterio integral y el teorema de la condición necesaria. Solución Para $p\neq 1$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado convergencia, Riemann, series
Comentarios desactivados en Convergencia de las series de Riemann