Archivo de la etiqueta: Riemann

Convergencia de las series de Riemann

Demostramos el teorema acerca de la convergencia o divergencia de las series de Riemann. Enunciado Se consideran la series de Riemann $$\displaystyle\sum_{n=1}^{+\infty}\frac{1}{n^p},\;p\in\mathbb{R}.$$ Analizar su convergencia usando el criterio integral y el teorema de la condición necesaria. Solución Para $p\neq 1$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Convergencia de las series de Riemann

Series de términos positivos

Proporcionamos ejercicios sobre eries de términos positivos. Enunciado Analizar el carácter de las series: $a)\; \displaystyle\sum_{n=1}^{+\infty}\frac{1}{n^2}.\quad b)\; \displaystyle\sum_{n=1}^{+\infty}\frac{1}{\sqrt[3]{n}}.\quad c)\; \displaystyle\sum_{n=1}^{+\infty}n^2.\quad d)\; \displaystyle\sum_{n=1}^{+\infty}\left(\frac{2}{n^4}-\frac{7}{n\sqrt{n}}\right).$ Usando el criterio de comparación por cociente, analizar el carácter de las series: $a)\; \displaystyle\sum_{n=1}^{+\infty}\frac{2n^2+n-1}{3n^4+n^3-2}.\quad b)\; \displaystyle\sum_{n=1}^{+\infty}\frac{\sqrt[3]{n}+2\sqrt[4]{n}+1}{2n+5\sqrt{n}+6}.$ Usando … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , , , , , | Comentarios desactivados en Series de términos positivos