Archivo de la etiqueta: series

Teorema de Pitagoras trigonométrico por series de potencias

Enunciado Usando los desarrollos en serie de potencias, demostrar el teorema de Pitágoras trigonométrico en $\mathbb{C},$ es decir $$\text{sen }^2 z+\cos^2z=1,\quad \forall z\in \mathbb{C}.$$ Solución Sabemos que para todo $z\in\mathbb{C}$ se verifica $$\text{sen } z = \sum_{n = 0}^\infty \frac{(-1)^n}{(2n … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , | Comentarios desactivados en Teorema de Pitagoras trigonométrico por series de potencias

Suma de series por residuos

Estudiamos la manera de calcular la suma de algunas series, usando residuos. Enunciado Sea $N$ entero no negativo y $\Gamma_N$ el cuadrado de vértices $$\left(N+\frac{1}{2}\right)(1+i),\quad\left(N+\frac{1}{2}\right)(1-i),\;$$ $$\left(N+\frac{1}{2}\right)(-1+i),\quad \left(N+\frac{1}{2}\right)(-1-i).$$ Demostrar que existe $M>0$ tal que $\left|\cot \pi z\right|\leq M$ para todo $z\in\Gamma_N.$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Suma de series por residuos