Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: simetría
Simetría de Householder
Demostramos una propiedad de la simetría de Householder. Enunciado Sea $N\neq 0$ un vector columna de $\mathbb{R}^n.$ Sabemos que la matriz de simetría respecto del hiperplano ortogonal a $N$ viene dada por $$H=I-2\frac{NN^T}{N^TN},$$ la cual se llama fórmula de Householder … Sigue leyendo
Publicado en Álgebra
Etiquetado Householder, simetría
Comentarios desactivados en Simetría de Householder
Matrices de proyección y simetría
Proporcionamos ejemplos relativos a las matrices de proyección y simetría sobre subespacios de $\mathbb{R}^n$ o $\mathbb{C}^n$ cuando el producto escalar es el usual. Enunciado $a)$ Sea $\mathbb{K}^m$ ($\mathbb{K}=\mathbb{R}$ o $\mathbb{K}=\mathbb{C}$) dotado del producto escalar usual y $F$ un subespacio de … Sigue leyendo
Publicado en Álgebra
Etiquetado matrices, proyección, simetría
Comentarios desactivados en Matrices de proyección y simetría