Archivo de la etiqueta: sistema

Sistema diferencial dependiente de un parámetro

Hallamos la solución general de un sistema diferencial dependiente de un parámetro. Enunciado Resolver el sistema diferencial $$\begin{cases}{x^{\prime}}=cx+y+2\\{y^{\prime}}=-c^2x-cy+1 \end{cases}\quad (c\in\mathbb{R}).$$ Solución En forma matricial, $$\begin{bmatrix}{x^\prime}\\{y^\prime}\end{bmatrix}=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}\begin{bmatrix}{x}\\{y}\end{bmatrix}+\begin{bmatrix}{2}\\{1}\end{bmatrix}.$$ Hallemos la forma de Jordan de la matriz $A=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}.$ El polinomio característico de $A$ es … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , , | Comentarios desactivados en Sistema diferencial dependiente de un parámetro

Determinante de una matriz solución de un sistema diferencial homogéneo

Demostramos una fórmula para el determinante de una matriz solución de un sistema diferencial homogéneo Enunciado Sea el sistema diferencial lineal homogéneo de orden $n$ $$X’=A(t)X.\qquad (H)$$ en donde $A(t)=[a_{ij}(t)],$ $I=[a,b]$ es un intervalo cerrado de la recta real, y … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , , , | Comentarios desactivados en Determinante de una matriz solución de un sistema diferencial homogéneo