Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: sucesión
Límite de una sucesión por potencia enésima de una matriz
Calculamos el límite de una sucesión numérica usando la potencia enésima de una matriz. Enunciado Dada la sucesión $x_n$ tal que $x_1=1,x_2=2$ y $x_{n+2}=\dfrac{1}{2}\left(x_n+x_{n+1}\right)$ probar que $\displaystyle\lim_{n \to{+}\infty}{x_n}=\frac{5}{3}.$ Enunciado Podemos escribir $$\underbrace{\begin{bmatrix}{x_{n+2}}\\{x_{n+1}}\end{bmatrix}}_{X_{n+2}}=\underbrace{\begin{bmatrix}{1/2}&{1/2}\\{1}&{0}\end{bmatrix}}_{A}\underbrace{\begin{bmatrix}{x_{n+1}}\\{x_{n}}\end{bmatrix}}_{X_{n+1.}}$$ Por tanto, $X_{n+2}=AX_{n+1}=A^2X_{n}=\ldots =A^nX_2=A^n\begin{bmatrix}{2}\\{1}\end{bmatrix}.$ Es decir, $$\lim_{n \to{+}\infty}\begin{bmatrix}{x_{n+2}}\\{x_{n+1}}\end{bmatrix}=\lim_{n … Sigue leyendo
Límite de una sucesión de conjuntos
Definimos el concepto de límite de una sucesión de conjuntos y estudiamos algunas de sus propiedades. Enunciado Sea $A_1,A_2,A_3,\ldots$ una sucesión de conjuntos contenidos en un conjunto universal $U$. Se definen: $$\liminf A_n = \bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty} A_k,\quad \limsup A_n = \bigcap_{n=1}^{\infty} … Sigue leyendo
Determinante y sucesión de Fibonacci
Relacionamos un determinante con la sucesión de Fibonacci. Enunciado Sea $1,2,3,5,8,13,\ldots$ la sucesión de Fibonacci y consideremos la matriz: $$A_n=\begin{bmatrix}{\;\;1}&{\;\;1}&{0}&{0}&{\ldots}&{\;\;0}&{0}\\{-1}&{\;\;1}&{1}&{0}&{\ldots}&{\;\;0}&{0}\\{\;\;0}&{-1}&{1}&{1}&{\ldots}&{\;\;0}&{0}\\{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}\\{\;\;0}&{\;\;0}&{0}&{0}&{\ldots}&{-1}&{1}\end{bmatrix}.$$ Probar que $\det A_n$ coincide con el termino enésimo de la sucesión. Solución La sucesión de Fibonacci $\{x_n\}$ está determinada … Sigue leyendo
Publicado en Álgebra
Etiquetado determinante, Fibonacci, sucesión
Comentarios desactivados en Determinante y sucesión de Fibonacci
Límite de una sucesión matricial
Usando diagonalización, hallamos el límite de una sucesión matricial. Enunciado Sea $f:\mathbb{R}^2\to \mathbb{R}^2$ una aplicación lineal cuya matriz respecto de la base canónica es $A.$ Se sabe que $f(2,-1)=(1,-1)$ y que $f(1,-2)=(2,-4).$ 1. Determinar $A.$ 2. Hallar los valores y … Sigue leyendo
Sucesión funcional con límite Gamma (x)
Estudiamos una sucesión funcional que tiene como límite la función gamma de Euler. Enunciado Para cada entero positivo $n$ se considera la función definida por $I_n(x)=\displaystyle\int_{0}^{n}t^{x-1}\left(1-\displaystyle\frac{t}{n}\right)^ndt\quad (x>0),$ y se pide (a) Determinar explícitamente $I_1(x),\;I_2(x),\;I_3(x).$ (b) Determinar la expresión explícita de … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado funcional, gamma, límite, sucesión
Comentarios desactivados en Sucesión funcional con límite Gamma (x)