Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: superficie
Primera forma fundamental de una superficie
Definimos la primera forma fundamental de una superficie y estudiamos alguna de sus propiedades. Enunciado Sea $U$ un abierto de $\mathbb{R}^2$ y $S$ una superficie en $\mathbb{R}^3$ definida mediante $$\mathbf{x}:U\to \mathbb{R}^2,\quad \mathbf{x}=\mathbf{x}(u,v)=\left(x_1(u,v),\;x_2(u,v),\;x_3(u,v)\right)$$ con $\mathbf{x}\in C^1(U)$ y $$\text{rango }\begin{bmatrix}{\dfrac{\partial x_1}{\partial u}} … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado forma, fundamental, primera, superficie
Comentarios desactivados en Primera forma fundamental de una superficie
Superficie de revolución y cónica
Enunciado Se consideran las rectas $r: x=y=z\;.\; s:-x+z=0,\;x+4y+z-6=0.$ Se pide: 1. Obtener la ecuación de la superficie que engendra la recta $s$ al girar alrededor de la recta $r$. 2. Se corta la superficie anterior por el plano $z=1$. Clasificar … Sigue leyendo
Publicado en Álgebra
Etiquetado cónica, revolución, superficie
Comentarios desactivados en Superficie de revolución y cónica
Integral de superficie de una función homogénea
Enunciado En $\mathbb{R}^3$, sea $F(\vec{r})\;(\vec{r}=x\vec{i}+y\vec{j}+z\vec{k})$ una función escalar homogénea de grado $m>0.$ Sea $S$ la esfera unidad $x^2+y^2+z^2\leq 1$ y sea $\partial S$ su superficie frontera. Transformar la integral de superficie $\displaystyle\iint_{\partial S}F(\vec{r})\;d\sigma$ en una integral triple extendida a la … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado función, homogénea, integral, superficie
Comentarios desactivados en Integral de superficie de una función homogénea