Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: Supremo
Espacio de Banach de las funciones continuas con la norma del supremo
En este problema se demuestra que el espacio vectorial $\mathcal{C}(I)$ de las funciones continuas (reales o complejas) definidas en $I=[a,b]$ es un espacio de Banach con la norma del supremo. Enunciado Sea $I=[a,b]$ intervalo cerrado de la recta real y … Sigue leyendo
Supremo, ínfimo, maximales y minimales
Proporcionamos ejercicios sobre los conceptos de supremo, ínfimo, maximal y minimal. Enunciado En $\mathbb{R}$ con el orden usual, determinar $\inf\; (0,1]$ y $\sup\; (0,1].$ En $\mathbb{R}$ con el orden usual, determinar $\inf \;(-\infty,2)$ y $\sup\; (-\infty,2).$ En $\mathbb{R}$ con el … Sigue leyendo