Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: topológicos
Espacios topológicos finitos metrizables
RESUMEN. Demostramos que un espacio topológico finito es metrizable si y sólo si su topología es la discreta. Enunciado Sea $(X,T)$ un espacio topológico con $X$ finito. Demostrar que $(X,T)$ es metrizable si y sólo si $T$ es la topología … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado espacios, finitos, metrizables, topológicos
Comentarios desactivados en Espacios topológicos finitos metrizables
Caracterización de espacios topológicos normales
RESUMEN. Proporcionamos una caracterización de los espacios topológicos normales Teorema Sea $X$ un espacio toplógico. Las siguienres afirmaciones son equivalentes: (i) $X$ es normal. (ii) Si $H$ es un conjunto abierto que contiene al conjunto cerrado $F$, entonces existe un … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado caracterización, espacios, normales, topológicos
Comentarios desactivados en Caracterización de espacios topológicos normales
Espacios topológicos $T_3$ y $T_4$
RESUMEN. Demostramos que todo espacio topológico $T_4$ es $T_3$ y que el recíproco no es cierto. Definición. Un espacio topológico $X$ se dice que es normal si para cada par de conjuntos $F_1,F_2$ cerrados y disjuntos existen dos conjuntos $G,H$ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado espacios, T_3, T_4, topológicos
Comentarios desactivados en Espacios topológicos $T_3$ y $T_4$
Espacios topológicos $T_2$ y $T_3$
RESUMEN. Demostramos que todo espacio topológico $T_3$ es $T_2$ y que el recíproco no es cierto. Definición. Un espacio topológico $X$ se dice que es regular si para todo $F\subset X$ cerrado y para todo $p\in X$ con $p\notin F$, … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado espacios, T_2, T_3, topológicos
Comentarios desactivados en Espacios topológicos $T_2$ y $T_3$
Espacios topológicos $T_1$ y $T_2$
RESUMEN. Demostramos que todo espacio topológico $T_2$ es $T_1$ y que el recíproco no es cierto. Definición. Sea $(X,T)$ un espacio topológico. Se dice que es un espacio $T_2$ o de Hausdorff si para todo par de elementos $a,b$ distintos … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado espacios, T_1, T_2, topológicos
Comentarios desactivados en Espacios topológicos $T_1$ y $T_2$