Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: traza
$Q(A) = (\text{traza } A)^2 – 2 \det A$
En este problema diagonalizamos una forma cuadrática en $M_2(\mathbb{R})$ definida mediante la traza y el determinante. Enunciado En el espacio vectorial $M_2(\mathbb{R})$ se considera el producto escalar $$\langle \begin{bmatrix}{x_1}&{x_2}\\{x_3}&{x_4}\end{bmatrix},\begin{bmatrix}{y_1}&{y_2}\\{y_3}&{y_4}\end{bmatrix}\rangle=x_1y_1+x_2y_2+x_3y_3+x_4y_4.$$ Se define la aplicación $Q:M_2(\mathbb{R})\to \mathbb{R}$ dada por $$Q(A)=\left(\text{traza }A\right)^2-2\det A.$$ … Sigue leyendo
Publicado en Álgebra
Etiquetado cuadrática, determinante, forma, traza
Comentarios desactivados en $Q(A) = (\text{traza } A)^2 – 2 \det A$
Traza de una matriz, propiedades
Demostramos propiedades de la traza de una matriz. Enunciado Sea $A=[a_{ij}]\in M_n(\mathbb{K}).$ Se llama traza de $A$ y se representa por $\operatorname{tr}A,$ a la suma de los elementos de la diagonal principal de $A,$ es decir: $$\operatorname{tr}A=a_{11}+a_{22}+\cdots+a_{nn}=\sum_{i=1}^{n}a_{ii}.$$ Demostrar que para … Sigue leyendo
Publicado en Álgebra
Etiquetado matriz, propiedades, traza
Comentarios desactivados en Traza de una matriz, propiedades