Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: trigonométrica
Forma trigonométrica de los números complejos
En los siguientes ejercicios usamos la forma trigonométrica de los números complejos. Enunciado Expresar en forma binómica $1)\;2[\cos 135^{\text{o}}+i\operatorname{sen } 135^{\text{o}}].\quad 2)\;5[\cos (-\pi/3)+i\operatorname{sen }(-\pi/3)].$ Expresar en forma trigonométrica $3)\;\sqrt{3}-i.\quad 4)\;-1+i.\quad 5)\;-4-4\sqrt{3}i.\quad 6)\;-3i.$ Calcular las siguientes potencias expresando el resultado en … Sigue leyendo
Publicado en Álgebra
Etiquetado complejos, forma, números, trigonométrica
Comentarios desactivados en Forma trigonométrica de los números complejos
Una integral trigonométrica en $[0,\pi]$
Enunciado Se considera la función compleja definida por $f(z)=\displaystyle\sum_{k=-n}^{+n}c_kz^k.$ 1. Obtener la expresión de la integral $\displaystyle\int_0^{2\pi}\left|f\left(e^{i\theta}\right)\right|^2\;d\theta$ en términos de los coeficientes $c_k$ de la función $f.$ 2. Aplicar el resultado anterior al cálculo de las integrales $\displaystyle\int_0^{\pi}\left(\dfrac{\sin 2n\theta}{\sin \theta}\right)^2d\theta\quad … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado integral, trigonométrica
Comentarios desactivados en Una integral trigonométrica en $[0,\pi]$