Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: unitario
Un operador autoadjunto y unitario
Proporcionamos un ejemplo de operador autoadjunto y unitario. Enunciado Sea $V$ un espacio vectorial complejo de dimensión finita dotado de un producto escalar $\langle \;, \rangle$ y sea $W$ un subespacio de $V.$ Se considera la aplicación $$T:V\to V,\quad T(v)=w-w’,$$ … Sigue leyendo
Publicado en Álgebra
Etiquetado autoadjunto, operador, unitario
Comentarios desactivados en Un operador autoadjunto y unitario
Concepto de producto escalar complejo, espacio unitario
Proporcionamos ejercicios sobre los conceptos de producto escalar complejo y espacio unitario. Enunciado Demostrar que en todo espacio unitario $E$ y para todo $\lambda\in\mathbb{C},$ $x,y,z\in E$ se verifica $\begin{aligned}&a)\;\langle x,y+z\rangle=\langle x,y\rangle+\langle x,z\rangle.\\&b)\; \langle x,\lambda y\rangle=\overline{\lambda}\langle x,y\rangle.\\&c)\;\langle x,0\rangle=\langle 0, y\rangle=0.\end{aligned}$ Dados … Sigue leyendo