Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: valor
Teorema del valor medio escalar
Proporcionamos la demostración del teorema del valor medio escalar, un ejemplo y la impostibilidad de extenderlo a campos no escalares. Teorema (del valor medio escalar). Sea $E$ un espacio nornado, $A\subset E$ abierto y $f:A\to \mathbb{R}$ diferenciable. Sean $a,b\in A$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado escalar, medio, teorema, valor
Comentarios desactivados en Teorema del valor medio escalar
Valor principal de Cauchy de una integral impropia
Definimos el valor principal de Cauchy de una integral impropia. Enunciado Sea $f:\mathbb{R}\to \mathbb{R}$ continua a trozos en todo intervalo $[a,b].$ Definimos el valor principal de Cauchy (VP) de la integral $\int_{-\infty}^{+\infty}f(x)\;dx$ como $$\text{VP}\int_{-\infty}^{+\infty}f(x)\;dx=\lim_{t\to+\infty}\int_{-t}^{t}f(x)\;dx.$$ Demostrar que si $\int_{-\infty}^{+\infty}f(x)\;dx$ es convergente, … Sigue leyendo
Concepto de valor y vector propio
Proporcionamos ejercicios sobre el concepto de valor y vector propio. Enunciado Se considera el endomorfismo $f:\mathbb{R}^2\to\mathbb{R}^2$ dado por $$f\begin{pmatrix}{x_1}\\{x_2}\end{pmatrix}=\begin{pmatrix}{2}&{2}\\{1}&{3}\end{pmatrix}\begin{pmatrix}{x_1}\\{x_2}\end{pmatrix}.$$ Analizar cuales de los siguientes vectores son vectores propios de $f$ $$v=(1,1)^t,\;v=(-2,1)^t,\;w=(3,1)$$ Sea $E$ el espacio vectorial $$E=\{x:\mathbb{R}\to\mathbb{R}: x\text{ es infinitamente … Sigue leyendo
Valor propio y asíntota horizontal
Relacionamos los conceptos de valor propio y asíntota horizontal. Enunciado Se considera el espacio vectorial $$E=\{f:\mathbb{R}\to \mathbb{R}:f\mbox { continua y }\lim_{x \to{+}\infty} f(x)\in\mathbb{R}\},$$ es decir la grafica de $f$ tiene una asíntota horizontal para $x\to +\infty.$ Se define la aplicación … Sigue leyendo
Publicado en Álgebra
Etiquetado asíntota, horizontal, propio, valor
Comentarios desactivados en Valor propio y asíntota horizontal