Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: variación
Variación de las constantes para $x^{\prime\prime} +P(t)x^\prime+Q(t)x=\cos t$
Aplicamos el método de variación de las constantes a una ecuación de segundo orden conociendo dos soluciones de la homogénea. Enunciado Si la ecuación diferencial $x^{\prime\prime} +P(t)x^\prime+Q(t)x=0$ tiene como soluciones $\varphi_1(t)=\sin^2 t$ y $\varphi_2(t)=\sin t$, encontrar una solución particular de … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado $x^{\prime\prime} +P(t)x^\prime+Q(t)x=\cos t$., constantes, variación
Comentarios desactivados en Variación de las constantes para $x^{\prime\prime} +P(t)x^\prime+Q(t)x=\cos t$
Variación de las constantes
Proporcionamos un ejemplo de aplicación del método de variación de las constantes. Enunciado Usando el método de variación de las constantes hallar la solución general de la ecuación diferencial $$x^{\prime\prime}+x=\dfrac{1}{\cos t}$$ Solución Recordamos el método de variación de las constantes. … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado constantes, variación
Comentarios desactivados en Variación de las constantes
Variación total de una función
Proporcionamos ejercicios sobre la variación total de una función. Enunciado Sea $f:[a,b]\to \mathbb{R}$ una función de variación acotada. Para toda partición $P=\{x_0,x_1,\ldots,x_n\}$ de $[a,b]$ denotamos por $\sum (P)$ a la suma $\sum_{k=1}^n\left|\Delta f_k\right|.$ Llamamos variación total de $f$ en $[a,b]$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado función, total, variación
Comentarios desactivados en Variación total de una función
Funciones de variación acotada
Proporcionamos ejercicios sobre funciones de variación acotada. Enunciado Estudiar si las siguientes funciones son de variación acotada $$\begin{aligned}& (a)\quad f:[a,b]\to\mathbb{R},\;f(x)=x.\\ & (b)\quad g:[0,1]\to\mathbb{R},\;g(x)=\begin{cases} x\cos \dfrac{1}{x} & \text{si}& x\ne 0\\0 & \text{si}& x=0.\end{cases}\end{aligned}$$ Demostrar que si $f:[a,b]\to\mathbb{R}$ es monótona, entonces es … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado acotada, funciones, variación
Comentarios desactivados en Funciones de variación acotada