- Norma en un anillo unitario
- Seminorma del supremo en el anillo de las funciones continuas
- Ordinales racionales $p$-ádicos
- Norma $p$-ádica en los racionales
- Principio del triángulo isósceles en normas no arquimedianas
- Una sucesión de Cauchy con la distancia $p$-ádica
- Anillo de las sucesiones de Cauchy en un anillo normado
- Ideal de las sucesiones nulas en el anillo de las sucesiones de Cauchy
- Norma en el anillo cociente $\widehat{R}$ de las sucesiones de Cauchy sobre el ideal de las nulas
- $R$ como subanillo de $\widehat{R}$
- Completación de todo anillo normado
- Conservación de normas no arquimediadas por completación
- Cuerpo $\mathbb{Q}_p$ de los números $p$-ádicos y subanillo $\mathbb{Z}_p$
- Sucesiones eventualmente constantes con normas no arquimedianas.
- …
Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.